Negative Exponents

Example $1 \quad$ Simplify in exponential notation $\quad \frac{5^{2}}{5^{5}}$
$\frac{5^{2}}{5^{5}}=5^{2-5}$ which equals 5^{-3}
$\frac{5^{2}}{5^{5}}=\frac{5 \times 5}{5 \times 5 \times 5 \times 5}$, dividing out the 5 's, we have $\frac{1}{5 \times 5 \times 5}=\frac{1}{5^{3}}$
Example $2 \quad$ Simplify in exponential notation $\quad \frac{7^{4}}{7^{6}}$
$\frac{7^{4}}{7^{6}}=7^{4-6}$ which equals 7^{-2}. Doing it by the definition of exponent, we get,
$\frac{7^{4}}{7^{6}}=\frac{X \times X \times X \times \bar{X}}{X \times Z \times Z \times X \times 7 \times 7}$, dividing out the 7's, we have $\frac{1}{7 \times 7}=\frac{1}{7^{2}}$

Any base, except 0 , raised to a negative exponent is equal to 1 over the base raised to a positive exponent.

$$
A^{-n}=\frac{1}{A^{n}}, \quad A \neq 0
$$

