## Graphing Exponentials of the form $y=b^{\mathbf{x}}, b>1$

If I were to ask you to graph an exponential equation in two variables such as $y=10^{x}$, my guess is you'd construct an $x-y$ chart, plug in convenient values of $x$ and find the corresponding values of $y$.

Example $\quad$ Graph $y=\mathbf{1 0}^{\mathbf{x}}$

| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | $1 / 1000$ | $1 / 100$ | $1 / 10$ | 1 | 10 | 100 | 1000 |



If I were to graph enough of these equations, we would begin to see an exponential equation of the form, $y=b^{x}$, all look pretty much the same when $\mathrm{b} \geq 1$.

All the graphs would go through the point ( 0,1 ),
they would slide down to the left getting closer and closer to the $x$-axis but never touching it. The values of $y$ are always positive no matter what values of $x$ are chosen! If $x=5$, then $y=10^{5}$ or $\mathbf{1 0 0 , 0 0 0}$.

If $x=-5$, the $y=10^{-5}$ which is $1 / 10,000$.

Example Graph $y=2^{x}$

Let $x$ equal $-3,-2,-1,0,1,2,3$ and find the corresponding values of $y$. then plot those points


