Example Write an equation to represent the following information. A population of a town is 20,000 . The population is growing at a rate of 5% per year, find the population after \mathbf{t} years.

The general equation for growth

$$
\mathbf{y}=a \mathbf{b}^{x}
$$

$a=\mathbf{2 0 , 0 0 0}$ the original population
$b=1.05,100 \%+5 \%$ growth
$\mathbf{x}=\mathbf{t}$
Population in 10 years

$$
y=20,000(1.05)^{t}
$$

$$
\begin{aligned}
& y=20,000(1.05)^{10} \\
& y \approx 20,000(1.628) \\
& y \approx 32,560
\end{aligned}
$$

Example Bob places $\mathbf{\$ 1 0 , 0 0 0}$ in the bank and is paid 6\% per year. How much money will be in the bank account after 5 years.

The equation for growth/decay is $\mathbf{y}=a b^{x}$
a - the original amount invested is $\$ 10,000$
b - the rate of growth is $\mathbf{1 . 0 6}, \mathbf{1 0 0 \%}+\mathbf{6 \%}$
x - the time is 5 years

$$
\begin{aligned}
& y=10,000(1.06)^{5} \\
& y \approx 10,000(1.338) \\
& y \approx 13,380
\end{aligned}
$$

After 5 years, Bob would approximately $\$ 13,380$ in his account.

Example Jack's base pay when he started his job was $\mathbf{\$ 3 0 , 0 0 0}$. If he was promised a cost of living increase of $\mathbf{2 \%}$ per year for his first 10 years on the job, what would be his pay after 10 years.

$$
\begin{aligned}
& y=a(1+r)^{x} \\
& y=30,000(1+.02)^{x} \\
& y=30,000(1.02)^{\mathbf{x}} \\
& y=30,000(1.218) \\
& y \approx 36,540
\end{aligned}
$$

Jack's base pay would approximate $\mathbf{\$ 3 6 , 5 4 0}$.

Example Write an equation to represent the following information. A population of a town is 20,000 . The population is decreasing at a rate of 5% per year, find the population after t years.

The general equation for growth $\quad \mathbf{y}=\boldsymbol{a} \mathbf{b}^{\mathbf{x}}$
$a=20,000$ the original population
$b=.95,(100 \%-5 \%)$ decay
$\mathbf{x}=\mathbf{t}$

$$
y=20,000(.95)^{t}
$$

To find the population (y) after 10 years, $\mathrm{y}=20,000(.95)^{10}$

$$
\begin{aligned}
& y \approx 20,000(.598) \\
& y \approx 11,960
\end{aligned}
$$

The population of the town after 10 years will approximate 11,960 people.

