Theorems

Thm. If d is a factor of $n, n \neq 0$ and $d \neq 0$, then n / d is a factor of n.

Thm. If \boldsymbol{n} is a composite, then \boldsymbol{n} has a prime factor \boldsymbol{p} such that $\mathbf{p}^{2} \leq \boldsymbol{n}$

Thm. If $\mathrm{n} \in \mathrm{J}$ and $\mathrm{n}>\mathbf{1}$ such that n is not divisible by any prime p , where $p^{2} \leq n$, then n is prime.

Is 109 prime?

Is 397 prime?

