The average cost of a unit can be found by dividing the cost, $C(x)$, by the number of items x.

The function $C(x)=10 x+3000$ represents the cost to produce \boldsymbol{x} number of items.

Find:
a. The average cost function, $c(x)$
b. How many items should be produced so that the average cost is less than $\$ 40$.

$$
\text { a. } \quad C(x)=10 x+3000
$$

The average cost function is $c(x)=C(x) x)$. To find the average cost function, divide the cost function by x.

$$
c(x)=C(x) x c(x)=10 x+3000 x
$$

The average cost function is $c(x)=10 x+3000 x$
b. We want the function $c(x)$ to be less than 40 .

$$
c(x)<40
$$

Substitute the rational expression forc(x).

$$
10 x+3000 x<40, x \neq 0
$$

Subtract 40 to get 0 on the right.

$$
10 x+3000 x-40<0
$$

Rewrite the left side as one quotient by finding the LCD and performing the subtraction.

$$
10 x+3000 x-40(x x) 10 x+3000 x-40 x x 10 x+3000-40 x x-30 x+3000 x<0<0<0<0
$$

Factor the numerator to show all factors.

$$
-30(x-100) x<0-30(x-100)=0 x=0
$$

Find the critical points.
$-30 \neq 0, x-100=0, x=100 \quad$ More than 100 items must be produced to keep the average cost below $\$ 40$ per item.

The function $C(x)=20 x+6000$ represents the cost to produce x, number of items. Find:
a. How many items should be produced so that the average cost is less than $\mathbf{\$ 6 0}$.
a. $c(x)=20 x+6000 x$
b. More than 150 items must be produced to keep the average cost below $\$ 60$ per item.

