
Ch. 25 Graphing Techniques 

Sec. 1 Parent Functions 

In this chapter, we will take our knowledge of graphs of basic functions and 
expand our ability to graph polynomial and rational functions using common 
sense, zeros, y-intercepts, stretching & shrinking, translations, reflections, 
symmetry, and asymptotic lines. 

The most basic way of graphing is by plotting points. Graphing becomes a lot 
easier if you have an idea of what the graph of a function might look like. We will 
still plot some convenient points, but they will be strategic so we can see what 
happens in certain areas of the graph. So, let’s look at some basic graphs that 
should be immediately recognizable based on our previous experiences. 

 

Identity Function   f(x) = x  
Domain (–∞,∞) 
Range (–∞,∞) 

To graph use x = –1, 0, 1, 2 

 

Squaring Function   f(x) = x2 
Domain (–∞,∞) 
Range [–∞,∞) 

To graph use x = –2,,–1, 0, 1, 2 
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Cubing Function   f(x) = x3 
Domain (–∞,∞) 
Range (–∞,∞) 

To graph let x = –1, 0, 1 

 

Square Root Function  f(x) = √x  
Domain [0. ∞) 
Range [0, ∞) 

To graph let the radicand, x = 0, 1, 4, 9 because you 
know their square roots. 

 

Cube Root Function  f(x) =  
Domain (–∞,∞) 
Range (–∞,∞) 

To graph let the radicand, x  = –8, –1, 0, 1, 8 
Because you know their cube roots 

 
Absolute Value Function  f(x) = |x| 
Domain (–∞, ∞) 
Range [0, ∞) 

To graph let x = –1, 0, 1 

x3
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Stretching - Shrinking 

I could also stretch or shrink those graphs by 
multiplying the function by numbers greater 
than one or by a fraction. 

When I stretch or shrink a function, the graph gets steeper or flatter as shown 
above. If I compared the ordered pairs of the parent function and the function being 
stretched, we would see the domain (x-values) stay the same, the range changes by 
whatever number we multiplied. 

Let’s look at and compare the ordered pairs for y = x2 and y = 5x2, as shown above 
and confirm that. 

    y = x2  y = 5x2 

 

     
Sec. 2 Translations 

Besides being stretched, these graphs can be translated very easily on the 
rectangular coordinate system  when we write the functions in certain forms.  

The easiest way to graph is to look at the parent functions we have already 
graphed, stretch or shrink them, then translate them along the x and y axes. 

In these equations, the a will be the stretch or shrink, the h is the horizontal shift 
(translation) and the k will be the vertical shift  

     x      y      x      y

0 0 0 0

1 1 1 5

    –1 1    –1 5
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Looking at the parent functions and adding translations, we have 

The a represents the stretch or shrink, the h is the horizontal translation and the k is 
the vertical translation.  

For instance, in the squaring function; f(x) = x2, looks like a bell shaped curve 
passing through the origin.  If I were to add 3, that entire graph would be moved up 
the y-axis 3 units, we’ll call that t(x) = x2 + 3. Now, if I wanted to move the graph 
horizontally 2 units, I will take my original squaring function, f(x), and have the 
graph moved 2 units to the right. We’ll call the new rule h(x) = (x – 2)2. 

Combining those translations would result in a 
new rule g(x) = (x–2)2 + 3, will move the original 
squaring function up three and over 2 on the 
coordinate system as shown to the right. 

There was no stretch or shrink. 

Vertical Translations 
If a function g is defined by f(x) + c, then for every point (x, y) on the graph of 
f(x), there will be a corresponding point (x, y+c) on the graph g(x).  

Horizontal Translations 
If a function g is defined by g(x) = f(x – c), then for every point (x, y) on the graph 
of f(x), there will be a corresponding point (x + c, y) on the graph of g(x).  

** What that means is this, when an h or k are in any type of grouping; 
parentheses, brackets, braces, under a vinculum (like a square root), you change 
the SIGN of the h or k. 
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You will see more of these types of translations when you work with the conic 
sections graphing parabolas, circles, ellipses, and hyperbolas. 

To graph these translations: 
   1. Use the parent function and multiply the range by a and   
    rewrite the x-y chart with the changes in the y’s. 
   2. With the new x-y chart, add the opposite of h to the x   
    values and k to the y values. 
   3.  Plot the new points. 

Example 1   Graph y = 2(x + 1)3 + 4 

  The parent function is y = x3, the values for the domain we will use   
  for the parent function are  –1, 0 and 1 because they are convenient   
  and easy. 

  Parent  Stretch (x2)   Translation –1 for x’s and +4 for y’s     

 

   

   

                

Actually doing this is very easy. After you graph using the stretch, move that graph 
1 unit left and 4 units up. 

   x     y   x y x    y

  –1   –1   –1   –2   –2 2

0 0 0 0   –1 4

1 1 1 2 0 6
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You could have done that 
translation without making new x-y 
charts. To do that, graph the 
parent function with the stretch or 
shrink, then move those points 
horizontally and vertically.



Example 2  Graph  by inspection 

First we will graph the parent function. 
Since there is no stretch, a = 1, we will move each 
point of the graph 2 units to the right and up 4 units. 

 Look at points A and A’; over 2 up 4. 

If I didn’t know the parent function and I Graphed this 
manually, I would pick convenient values for x, then 
find the corresponding y-values. 

What are convenient values when taking the cube root? Perfect cubes, –1, 0, 1, 8, .. 
So, I will let the radicand, (x–2) equal those perfect cubes to find x. Then use that x 
to find the corresponding y-values. 

x – 2 = –1;  x – 2 = 0;   x – 2 = 1;   x – 2 = 8;  etc 
x = 1;  x = 2;    x = 3;   x = 10 

Substituting those values of x into the equation, gives you a perfect cube in the 
radicand which will allow you to find the y-values easily. 

Example 3  Graph by inspection 

  
 First, I graph the parent   
 function, that’s in black 

 Second, I will need to graph  
 the stretch using the parent  
 function which is in blue;  
 a = 4. 
  
  
After graphing the stretch, I will then 
move the graph 2 units to the left and up 3 which is in red. 
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Sec. 3 Symmetry 

To determine if a function P has symmetry, we have 3 tests: 

 a. symmetric to y-axis, if the replacement of x with –x results in an   
  equivalent equation 
 b. symmetric to x-axis, if the replacement of y with –y results in an   
  equivalent equation 
 c. symmetric with origin, the the replacement of x with –x and  
  y with  –y results in an equivalent equation 

Zeros 

Number of Zeros Theorem 
A polynomial of degree n has at most n distinct zeros. 

What this theorem means is an equation of degree 2 can have at most 2 zeros. An 
equation of degree 3 can have at most 3 zeros, etc. From a graphing standpoint, 
that means if I have an equation of degree 3, we could have 3 zeros, or the graph 
could cross the x-axis at most 3 times. 

Let’s look at a few graphs and see if we can determine what the might look like. 

Example 1 

In the equation, f(x) = x2 – 4, the polynomial is of 
degree 2, so at most the graph will intersect the x-
axis twice.  

End Behaviors 

What happens for large vales of x?  So when   
x = 100, what happens to the graph? Substituting 
values into the equation, we can see f(x) get very 
large too. When x gets very small, what happens? So 
if x = –100, what happens? Again the values of f(x) 
get very large too. We can see the end behaviors on 
the graph are positive. So, the graph goes up to the right and up to the left. 
 

 of 7 16

6

4

2

–2

–4

5

f x( ) = x2 –  4



Example 2 

In the equation, g(x) = x3 + 3x2 – x – 3, so 
let’s check for x and y intercepts. The y 
intercept is easy to find by letting x = 0. The x 
intercepts require us to let y = 0 and solve the 
equation. x3 + 3x2 – x – 3 = 0. 

x2(x + 3) –1(x + 3) = (x + 1)(x – 1)(x + 3) = 0 
We have zeros at –3, –1, and 1. Now let’s 
check end behaviors.  

In this cubic equation, the cubic term dominates the equation for very large and 
small values of x. So, when x = 100, f(x) will be a very large positive number. 
When x = –100, f(x) will be very large negative number. We can see the end 
behaviors on the graph. For large vales of x, the graph stays positive. For large 
negative values, the graph stays negative. So the graph goes up the right and down 
to the left. 
 
Example 3 

Let’s look at a 4th degree equation,  
f(x) = x4 –5x2 + 4.  

At most the graph will intersect the x axis 4 
times. The y-intercept is 4. The zeros occur  
at  –1, –2, 1, and 2.  

What happens for very large value of x, say x = 
100, since x4 dominates the polynomial, we see 
when we substitute very large vales of x, f(x) is 
positive. Checking large negative numbers, x = –100, the 4th degree term 
dominates, so f(x) has a positive end behavior that can be seen in the graph. So the 
graph goes up to the right an up to the left. 

If we wanted, we could have substituted –x for x and found that we have symmetry 
with respect the y-axis as well. 
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Intermediate Value Theorem 
  
If f(x) defines a polynomial function with real coefficients, and if for real   
numbers a and b, the values of f(a) and f(b) have opposite signs, then there   
is least one real zero between a and b. 

What that tells us is the graph will cross the x-axis somewhere between those 2 
points. 

Multiplicity Theorem 
  
If (x – r)m is a factor of a polynomial, then r is a zero of multiplicity m of f. 

Example 1   f(x) = 5(x – 2)(x + 1)3(x –3)4 

   2 is a zero of multiplicity 1 
   –1 is a zero of multiplicity 3 
   3 is a zero of multiplicity 4 

When the multiplicity of a zero is even, the graph touches the x-axis at that point, 
but does not cross the x-axis. When the multiplicity of a zero is odd, the graph 
crosses the x-axis at that point. 

Example 2  Graph f(x) = (x – 3)2(x + 1) 

   Notice the graph did not cross  
                               the   x-axis at x = 3 
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Example 3   Graph h(x) = (x – 2)3(x + 1) 

   Notice the graph crossed the x-  
   axis at x = 2 

So, to sketch a polynomial function of degree n, it helps to have a general idea of 
what the graph should look like, then follow the following steps: 

  1. Find the zeros; the x intercepts 
  2. Find f(0) = c, the y intercept 
  3. Use test points within intervals to determine the sign f(a), above 
   or below the x axis 
  4. Use end behaviors 

Graphing Rational Functions - Asymptotes 

A rational function is a function defined by a rational expression. 

A rational function is often defined mathematically: 

where  p(x)/q(x) is in simplest terms polynomials and q(x) ≠ 0. 
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Let’s look at the graph of a simple rational function;  

    f(x) = 1/x 

If we examine the domain, we realize quickly that we 
cannot have a zero in the denominator. But all the other 
values of x would work, so the domain is  
                             (–∞, 0) U (0, ∞) 

Notice the graph is not continuous at x = 0 because the expression will  be 
undefined. In other words , the graph of f(x) = 1/x will never intersect the vertical 
line x = 0, the y axis. That line is called a vertical asymptote. 

If we look at each portion of the graph and look at their end behaviors, we also see 
as x gets very large, the value of f(x) gets smaller and smaller and gets closer to 
zero but will never get there. That means the graph gets closer and closer to the x 
axis but will never touch the axis or cross it. That means the x axis, y= 0, is a 
horizontal asymptote. 

Looking at positive values of x close to zero, we see the values of f(x) get very 
large the close they get to the y axis. 

The same arguments can be used for the left side of the graph. 

So when graphing rational functions, an added dynamic is introduced. We have to 
check to see where the function is not defined, when the denominator is zero, 
because the graph will be discontinuous at those points, and we will see the vertical 
asymptotes divide the graph into sections. We then use our techniques for graphing 
in this intervals. 

So, let’s try to make some generalization for graphing rational functions. But let 
me introduce this arrow, “⟶”, mathematically that means “approaches”. 

Asymptotes of f(x), a rational expression 

 1.  If f(a)  is undefined, then x = a is a vertical asymptote. 
 2. If f(b) ⟶ c as x ⟶∞,  then y = c is a horizontal asymptote. 
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In the last example, we saw when x gets very large, x ⟶ ∞, then f(x) got closer 
and closer to zero. So we said, y = 0 is a horizontal asymptote. 

Finding Asymptotes 

To find asymptotes of rational functions: 

 Vertical Asymptotes 
  1. Find vertical asymptotes by setting the denominator equal to   
   zero and solve of x. If a is a zero of the denominator, then the   
   line x = a is a vertical asymptote. 

 Horizontal Asymptotes 
  1. If the degree of the numerator is less than the degree of the   
   denominator, then there is a horizontal asymptote at y = 0. 
  2. If the numerator and the denominator have the same degree,   
   there is a horizontal asymptote determined by the fraction of the 
   leading coefficients of the numerator and denominator. 

 Oblique Asymptotes 
  3. If the degree of the numerator is exactly one more than the   
   degree of the denominator, then there will be an oblique    
   asymptote determined by dividing the numerator by the    
   denominator and disregarding the remainder and setting that   
   equal to y. 

Now, let’s put all this information into play and see how this helps us graph 
rational expressions. 

Graphing Rational Functions of the form  

 Step 1. Find all vertical asymptotes 
 Step 2. Find horizontal or oblique asymptotes 
 Step 3. Find the y intercepts, let x = 0 
 Step 4. Find the x intercepts, let y = 0 
 Step 5.  Determine if the graph will intersect the horizontal or oblique   
   asymptotes 
 Step 6. Plot selected points in each interval determined by the vertical   
   asymptotes 

f (x)= p(x)
q(x)
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Example 1  Graph  

  
   1) Following the steps above, find the vertical asymptotes   
    by setting the denominator equal to zero. 
   
    2x2 + 5x – 3 = (2x – 1)(x + 3) 
    (2x – 1)(x + 3) = 0, so x = – 3 and x = 1/2 are vertical   
    asymptotes. 
   2) Since the degree of the numerator is less than the    
    denominator, y = 0 is a horizontal asymptote. 
   3) The y intercept is –1/3, letting x = 0 
   4) The x intercept by setting f(x) = 0, x = –1 is an x    
    intercept 
   5) Set f(x) = horizontal asymptote, f(x) = 0, so the graph   
    intersect the horizontal asymptote at (–1, 0) 
   6)  Check selected points and behaviors in each interval 

 

The vertical asymptotes occurs at 
 x = – 3 and x = 1/2, represented by the 
red dashed lines. So that divides the 
graphs into 3 intervals.  

The horizontal asymptote occurs y = 0, 
so we can see what happens for large 
positive and negative values of x. 

We found the x and y intercepts and we 
then check end behaviors in each 
interval defined by the vertical 
asymptotes. 

Remember a graph can never cross a vertical asymptote. They can cross horizontal 
and oblique asymptotes. 

f (x)= x +1
2x2 + 5x − 3

 of 13 16

4

2

–2

–4

–5



Example 2  Graph  

Using our steps, there is a vertical asymptote at x = 2. 
red dashed line.  If I divide (x2 + 1) by (x–2), we get 
our horizontal asymptote at  y = x + 2.  

The y intercept occurs at –1/2. There are no x 
intercepts because x2 + 1 has no real solutions.  

And the graph does not intercept the oblique 
asymptotes because the rational function and the 
equation of the oblique asymptote has no solution.  In 

other words,  does not have a solution. 

Finally, we check end behaviors around the vertical 
asymptotes and then for large  positive and negative 
values of x. 

 

Example 3    Graph  

   The rational expression is 
   not reduced. So    
   simplifying the    
   expression, we have  
    
   f(x) = x + 3, x ≠ 3. 

Graphing the line, we see the function is not 
continuous at x = 3, so there is an open 
circle there. 

f (x)= x2 +1
x − 2

x2 +1
x − 2

= x + 2

f (x) = x2 − 9
x − 3
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Example 4 Graph  f(x) =  

Let’s quickly find the vertical asymptote(s) by setting the denominator equal to 
zero, so x = 1. And since the degree of the numerator and denominator are the 

same, the horizontal asymptote will be  or y = 3. Draw those two asymptotes with 

dashed lines.  

Then we will pick value of x close to the vertical asymptote, find the 
corresponding y, and plot that point. (Finding zeros sometimes makes that easier.) 

Now, pick another value of x on the same side of the vertical asymptote, find that 
corresponding value of y, and plot that point. 

Now, use symmetry to graph on the other side of the vertical asymptote. 

Like everything else you do in life, the more you do of these, they become almost 
automatic. While I can’t make these more difficult, I can make them longer ;-) 

Let’s look at another example. 

(3x + 6)
(x − 1)

3
1
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Example 5    Graph f(x) =  

Factoring, we have   , we have vertical asymptotes at 0 and 4. And 

since the degrees of the numerator and denominate are the same, we have a 
horizontal asymptote at 1/1, or y = 1. Draw those asymptotes.  

The two vertical asymptotes divide the graph into three regions. That results in 
picking points in each region - yes, that’s fun! 

Here’s a sketch of that graph. 
 

Picking an x to the right of the vertical asymptote on the right, like 5, we get y 
equaling 21/5 or 4 1/5. Graph that point, now pick another value of x on the same 
side of that vertical asymptote like x = 10, that results in y = 96/60 or 8/5. 
Connecting those, we get the graph on the far right using the asymptotes.  

The graph on the far left can be done the same way - we could also use symmetry 
to make that a little easier. 

And finally, we have to sketch the graph of the middle region, when x = 1, y = 2. 
When x is 3, y is –5/3. Again, use the asymptotes 

Kind of looks like Example 1.

(x2 − 4)
(x2 − 4x)

[(x + 2)(x − 2)]
[x(x − 4)]
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