Graphing Rational Functions

$$
f(x)=\frac{p(x)}{q(x)}
$$

Step 1. Find all vertical asymptotes (Denominator zero)
Step 2. Find horizontal or oblique asymptotes
Step 3. Find the y intercepts, let $\mathrm{x}=0$
Step 4. Find the x intercepts, let $\mathrm{y}=0$
Step 5. Determine if the graph will intersect the horizontal or oblique asymptotes, set eqn $=$ to HA or oblique asymptote
Step 6. Plot selected points in each interval; interval determined by the vertical asymptotes

1. Graph $y=\frac{-2}{x}$ and identify the vertical and horizontal asymptotes.
2. Graph $f(x)=\frac{3}{x}$ and identify the vertical and horizontal asymptotes.
3. Graph $f(x)=\frac{-1}{x}+2$ and identify the vertical and horizontal asymptotes.
4. Graph

$$
f(x)=\frac{2}{x}-3 \text { and identify the vertical and horizontal asymptotes. }
$$

5. Graph $y=\frac{1}{x-2}$ and identify the vertical and horizontal asymptotes.
6. Graph $f(x)=\frac{-2}{x+3}$ and identify the vertical and horizontal asymptotes.
7. Graph $f(x)=\frac{2}{x+1}-1$ and identify the vertical and horizontal asymptotes.
8. Graph $y=\frac{-3}{x-4}+2$ and identify the vertical and horizontal asymptotes.
9. Graph $f(x)=\frac{x}{x+3}$ and identify the vertical and horizontal asymptotes.
10. Graph $y=\frac{3 x}{x-2}$ and identify the vertical and horizontal asymptotes.
11. Graph $f(x)=\frac{-2 x}{x+1}$ and identify the vertical and horizontal asymptotes.
12. Graph $y=\frac{-x}{x-3}$ and identify the vertical and horizontal asymptotes.
13. Grap $f(x)=\frac{2 x-3}{x+2}$ and identify the vertical and horizontal asymptotes.
14. Graph $f(x)=\frac{-x+5}{x-1}$ and identify the vertical and horizontal asymptotes.
15. Graph $y=\frac{2 x^{2}}{x^{2}-4}$ and identify the vertical and horizontal asymptotes.
16. Graph $f(x)=\frac{x^{2}}{x^{2}+4}$ and identify the vertical and horizontal asymptotes.
17. Graph $y=\frac{x^{2}+2}{x}$ and identify the vertical and slant asymptotes.
18. Give the end behavior of $f(x)=\frac{3}{x+2}$ as x approaches ∞.
19. Give the end behavior of $f(x)=\frac{-5}{x-3}$ as x approaches ∞.
20. Give the end behavior of $f(x)=\frac{2 x+1}{x-3}$ as x approaches ∞.
21. Give the end behavior of $f(x)=\frac{x+3}{3 x+1}$ as x approaches ∞.
22. Give the end behavior of $f(x)=\frac{-x+2}{2 x+1}$ as x approaches ∞.
23. Give the end behavior of $f(x)=\frac{3 x-1}{-5 x+2}$ as x approaches ∞.
