Geo Proofs

by Bill Hanlon

Future Reference - To prove congruence, it is important that you remember not only your congruence theorems, (SSS, SAS, ASA, AAS, HL, HA, HL, LA) but know the relationships with angles formed by intersecting lines, parallel lines, right angles, angles bisectors, medians and theorems concerning triangles. Quite often you will need to use construction to create triangles that will allow you to do proofs or solve problems.

Thm - Vertical angles are congruent

Given: $\angle 1$ and $\angle 2$ are vertical angles

Prove: $\angle 1 \cong \angle 2$

Strategy: Knowing angles 1 and 3 are two angles whose ext. sides form a straight line as do angles 2 and 3 . Those angles form sup $\angle \mathrm{s}$, whose sum is 180°

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are vert \angle 's	Given
2. $\angle 1$ and $\angle 3$ are $\operatorname{supp} \angle$'s	Ext sides, 2 adj \angle 's in a line
3. $\angle 2$ and $\angle 3$ are $\operatorname{supp} \angle$'s	Same as \#2
4. $\begin{aligned} & \angle 1+\angle 3=180^{\circ} \\ & \angle 2+\angle 3=180^{\circ} \end{aligned}$	Def of Supp $\angle_{\text {s }}$
5. $\angle 1+\angle 3=\angle 2+\angle 3$	Sub
6. $\angle 1=\angle 2$	Sub Prop of Equality
7. $\angle 1 \cong \angle 2$	Def of Congruence

Thm If 2 parallel lines are cut by a transversal, the alternate interior angles are congruent

Strategy: Since we know by postulate that L_{1} and $\angle 3$ are equal by corresponding $L_{\text {s and }} \angle_{2}$ and $\angle 3$ are equal because of vertical, we can make those equations and substitute

Statements	Reasons
1. 1 ll m $\angle 1$ and $\angle 2$ are alt int \angle 's	Given
2. $\angle 1$ and $\angle 3$ are corr. $\angle \mathrm{s}$	Def of corr. $\angle \mathrm{s}$
3. $\angle 1 \cong \angle 3$	Two 11 lines, cut by t, corr. \angle 's \cong
4. $\angle 3 \cong \angle 2$	Vert \angle 's
5. $\angle 1 \cong \angle 2$	Transitive Prop

Thm: The sum of the measures of the angles of a triangle is 180°

G: \triangle DEF

P: $\angle 1+\angle 2+\angle 3=180^{\circ}$

Strategy: Using our knowledge of 11 lines being cut by a transversal, we will construct a line thru F 11 to line segment DE, then segments DF and EF are transversals and the alt int $\angle \mathrm{s}$ are

	Statements	Reasons	
1. Draw $\overline{R S} 11 \overline{D E}$	Construction		
2. $\angle 4 \wedge \angle \mathrm{DFS}$ are supp	Ext sides of 2 adj 2's		
3. $\angle 4+\angle \mathrm{DFS}=180$	Def Supp \angle 's		
4. $\angle \mathrm{DFS}=\angle 2+\angle 5$	Angle Add Post		
5. $\angle 4+\angle 2+\angle 5=180$	Sub		
6. $\angle 1=\angle 4$	$2 \\|$ lines cut by t,		
	$\angle 3=\angle 5$	alt int $\angle ’ \mathrm{~s}=$	
7. $\angle 1+\angle 2+\angle 3=180$	Sub into line 5		

Congruence Postulates

SSS
SAS
ASA

Thm If two angles and the non included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

Given : $\angle \mathrm{A} \cong \angle \mathrm{D}, \angle \mathrm{C} \cong \angle \mathrm{F}, \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$
Prove: $\triangle \mathrm{ABC} \cong \Delta \mathrm{DEF}$

Strategy: Knowing $2 \angle \mathrm{~s}$ of one triangle are equal to two angles of another triangle, the third angles must be equal. That allows me to them use one of the other congruence postulates to complete the proof.

Statements		Reasons
1. $\quad \angle \mathrm{A} \cong \angle \mathrm{D}$	Given	
	$\angle \mathrm{C} \cong \angle \mathrm{F}$	
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$	$\angle \mathrm{B} \cong \angle \mathrm{E}$	$2 \angle$'s of a Δ congruent 2 's of another $\Delta, 3^{\text {rd }}$'s congruent
3.	$\Delta \mathrm{ABC} \cong \Delta \mathrm{DEF}$	ASA

Thm. The exterior \angle of a Δ is equal to the sum of the 2 remote interior \angle 's

G: $\quad \triangle \mathrm{ABC}$
P: $\quad \angle 1=\angle \mathrm{A}+\angle \mathrm{C}$

Strategy: We know the sum of the interior angles of a triangle is 180 , we know that the ext sides of angles 1 and 2 lie in a line, hence equal 180, we set them equal and solve

Statements	Reasons	
1.	$\angle \mathrm{A}+\angle \mathrm{C}+\angle 2=180$	Int \angle 's of $\Delta=180$
2. $\angle 1 \wedge \angle 2$ are supp	Ext sides 2 adj \angle 's	
3. $\angle 1+\angle 2=180$	Def Supp \angle 's	
4.	$\angle \mathrm{A}+\angle \mathrm{C}+\angle 2=\angle 1+\angle 2$	Sub
5.	$\angle \mathrm{A}+\angle \mathrm{C}=\angle 1$	Sub Prop Equality

Thm. If $2 \angle$'s of Δ are \cong, the sides opposite those \angle 's are \cong

G: $\quad \Delta \mathrm{ABC}$ $\angle \mathrm{A} \cong \angle \mathrm{B}$

P: $\quad \overline{A C} \cong \overline{B C}$

Strategy: To prove congruence, we need two triangles, we only have one. Constructing an angle bisector results in two triangles being formed which allows me to use the congruence theorems to prove triangles congruent, then use cpctc

Statements	Reasons	
1.	Draw \angle bisector CX	Construction
2. $\angle 1 \cong \angle 2$	Def \angle bisector	
3. $\angle \mathrm{A} \cong \angle \mathrm{B}$	Given	
4. $\overline{C X} \cong \overline{C X}$	Reflexive Prop	
5. $\Delta \mathrm{CAX} \cong \triangle \mathrm{CBX}$	AAS	
6. $\overline{A C} \cong \overline{B C}$	cpctc	

Thm.

$$
\text { A diagonal of a } \| \text { ogram separates the } \| \text { ogram into } 2 \cong \Delta \text { 's }
$$

G: \square RSTW
 P: $\quad \Delta \mathrm{RST} \cong \Delta \mathrm{TWR}$

Strategy: Use the congruence theorems to prove the triangles congruent

Statements	Reasons			
1.	RSTW is a \\|ogram	Given		
2.	$\overline{R S} \\| \overline{W T}$	Def - \\|ogram		
3.	$\angle 1 \cong \angle 2$	$2 \\|$ lines cut by t, alt		
		int \angle 's \cong		
4.	$\overline{R T} \cong \overline{R T}$	Reflexive		
5.	$\overline{R W} \\| \overline{S T}$	Def - \\|ogram		
6.	$\angle 3 \cong \angle 4$	$2 \\|$ lines cut by t, alt		
		int \angle 's \cong		
7.	$\Delta \mathrm{RST} \cong \Delta \mathrm{TWR}$	ASA		

Thm: The diagonals of a \|ogram bisect each other.

$$
\begin{aligned}
& \mathrm{G}: \quad \square \mathrm{JKLM} \\
& \mathrm{P}: \overline{L E} \cong \overline{J E} ; \overline{K E} \cong \overline{M E}
\end{aligned}
$$

Strategy: Drawing the diagonals and using the theorems we have about parallel lines being cut by a transversal, we are able to label angles, show triangles congruent, then use cpctc

	Statements	Reasons		
1.	JKLM is $\\|$ ogram	Give		
2.	$\overline{J K} \\| \overline{M L}$	Def - $\\|$ ogram		
3.	$\angle 1 \cong \angle 2$	Alt int \angle 's		
4.	$\overline{J K} \cong \overline{M L}$	opposite sides $\\|$ ogram \cong		
5.	$\angle 3 \cong \angle 4$	Alt int \angle 's		
6.	$\Delta \mathrm{JEK} \cong \Delta \mathrm{LEM}$	ASA		
7.	$\overline{J E} \cong \overline{L E}$	cpctc		

Thm: \quad The diagonals of a rhombus are \perp

G: Rhombus RSTW
P: $\quad \mathrm{RT} \perp \mathrm{SW}$

Strategy: Constructing the diagonals and using the def of a rhombus and parallelogram theorems, we have to show congruent adjacent angles to prove lines are perpendicular. So by proving triangles are congruent, we can use cpctc

Statements	Reasons		
1.	RSTW - Rhombus	Give	
2.	$\overline{R S} \cong \overline{S W}$	Def - Rhombus	
3.	$\overline{S A} \cong \overline{W A}$	Diagonals $\\|$ ogram bisect	
		each other	
4.	$\overline{R A} \cong \overline{R A}$	Reflexive	
5.	$\Delta \mathrm{RSA} \cong \Delta \mathrm{RWA}$	SSS	
6.	$\angle 1 \cong \angle 2$	cpctc	
7.	$\mathrm{RT} \perp \mathrm{SW}$	2 lines form \cong adj \angle 's	

Thm: \quad The median of a trapezoid is || to the bases and is equal to half the sum of the bases.

G: RSTW - trap
P: $\quad \overline{M N} \| \overline{S T}$
$\overline{M N} \| \overline{R W}$
$\mathrm{MN}=\frac{1}{2}(\mathrm{ST}+\mathrm{RW})$

Strategy: Use Coordinate Geometry. Place trap on coordinate axes, label pts. carefully keeping relationships. Find slopes, ||lines have = slopes. Find distances.

Since MN, RW, and ST have the same slope, the lines are ||
$\mathrm{MN}=\mathrm{c}+\mathrm{d}-\mathrm{a}$
$\mathrm{RW}=2 \mathrm{c}-2 \mathrm{a}$
$\mathrm{ST}=2 \mathrm{~d}$
$R W+S T=2 c-2 a+2 d$
$\mathrm{MN}=\mathrm{c}+\mathrm{d}-\mathrm{a}$

$$
\mathrm{MN}=\frac{1}{2}(\mathrm{STW}+\mathrm{RW})
$$

Thm: If a line is $\|$ to one side of a Δ and intersects the other 2 sides, it divides them proportionally.

G: $\quad \Delta \mathrm{ABC}, \overline{Y Z} \| \overline{A B}$
P: $\quad \frac{A Y}{Y C}=\frac{B Z}{Z C}$

Strategy: Show 2 triangles formed are similar to write proportion, then use the Segment Add Post to make substitutions

	Statements	Reason	
1.	$\overline{Y Z} \\| \overline{A B}$	Given	
2.	$\angle 1 \cong \angle 2 ; \angle 3 \cong \angle 4$	$2 \\|$ lines cut by $\mathrm{t}, \mathrm{c} \angle$'s \cong	
3.	$\Delta \mathrm{ACB} \sim \Delta \mathrm{YCZ}$	Angle Angle Post	
4.	$\frac{\mathrm{AC}}{\mathrm{YC}}=\frac{\mathrm{BC}}{\mathrm{ZC}}$	$\sim \Delta$ sides in proportion	
	$\mathrm{AC}-\mathrm{YC}$		
5.	$\frac{\mathrm{BC}-\mathrm{ZC}}{\mathrm{YC}}$		
6.	$\mathrm{AY}+\mathrm{YC}=\mathrm{AC}$	Prop of proportions	
	$\mathrm{BZ}+\mathrm{ZC}=\mathrm{BC}$	Segment Add Post	
7. $\mathrm{AY}=\mathrm{AC}-\mathrm{YC}$	Sub Prop $=$		
	$\mathrm{BZ}=\mathrm{BC}-\mathrm{ZC}$		
8. $\frac{\mathrm{AY}}{\mathrm{YC}}=\frac{\mathrm{BZ}}{\mathrm{ZC}}$			

Thm: If a ray bisects an \angle of Δ, it divides the opposite side into segments whose lengths are proportional to the lengths of the other 2 sides.

G: $\quad \Delta$ LMN $\overline{L P}$ bisects $\angle \mathrm{MLN}$

P: $\quad \frac{\mathrm{MP}}{\mathrm{PN}}=\frac{\mathrm{LM}}{\mathrm{LN}}$

Statements	Reasons		
1.	Extend ML, YN $\\| \mathrm{LP}$	Construction	
2.	$\frac{\mathrm{MP}}{\mathrm{PN}}=\frac{\mathrm{LM}}{\mathrm{LY}}$ for $\triangle \mathrm{MYN}$	line $\\|$, divides Δ pro	
3.	$\angle 1 \cong \angle 2$	Corr \angle 's	
4.	$\angle 1 \cong \angle 3$	Det \angle bisector	
5.	$\angle 3 \cong \angle 4$	Alt int $\angle '^{\prime}$	
6.	$\angle 2 \cong \angle 4$	Sub	
7.	$\overline{L Y} \cong \overline{L N}$	Base \angle 's \cong, sides \cong	
8.	$\frac{\mathrm{MP}}{\mathrm{PN}}=\frac{\mathrm{LM}}{\mathrm{LN}}$	Sub	

If the altitude is drawn to the hypotenuse of a right Δ, the 2 Δ 's formed are similar to the given Δ and each other.

G: Rt $\triangle \mathrm{ABC}, \overline{C D} \perp \overline{A B}$
P: $\quad \triangle \mathrm{ADC} \sim \Delta \mathrm{ACB}$
$\Delta \mathrm{CDB} \sim \Delta \mathrm{ACB}$ $\triangle \mathrm{ADC} \sim \Delta \mathrm{CDB}$

Reasons
Give
\perp lines form rt \angle 's
Reflexive
AA Postulate
Reflexive
AA Postulate
Transitive; 4 \& 6

Thm: The length of the median to the hypotenuse of a right triangle is equal to one-half the length of the hypotenuse

Given: $\quad \triangle \mathrm{ABC}, \mathrm{C}$ is the right angle $\overline{C M}$ is the median

Prove: $\quad \mathrm{CM}=1 / 2(\mathrm{AB})$

1.	$\Delta \mathrm{ABC}$ is rt Δ	Given	
	$\overline{C M}$ is the median		
2.	Construct $\overline{D M}$ thru M 3. parallel to $\overline{A C}$	Construction	
4.	$\angle \mathrm{MDC}$ is rt angle		
5.	$\mathrm{BD}=\mathrm{AM}$	Corresponding angles	
6.	$\Delta \mathrm{MBD} \cong \Delta \mathrm{MCD}$	Def of median	
7.	$\mathrm{CM} \cong \mathrm{MB}$	\|	lines, congruent segments
8.	$\mathrm{BM}+\mathrm{MA}=\mathrm{AB}$	HL Thm	
9.	$\mathrm{BM}+\mathrm{BM}=\mathrm{AB}$	cpctc	
10.	$2 \mathrm{BM}=\mathrm{AB}$	Segment Add Thm	
11.	$2 \mathrm{CM}=\mathrm{AB}$	Sub	
12.	$\mathrm{CM}=1 / 2(\mathrm{AB})$	Dist Prop	
		Sub	
		Div Prop Eq	

Thm: In any rt Δ the square of the hypotenuse is equal to the sum of the squares of the legs.

G: Rt $\triangle \mathrm{ACB}$
P: $\quad c^{2}=a^{2}+b^{2}$

	Statements	Reasons
1.	Draw \perp from c to AB	Construction
2.	$\frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{y}} ; \frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{b}}{x}$	The length of a leg of $\mathrm{art} \Delta$ is
		the geo mean....
3.	$\mathrm{c}=\mathrm{x}+\mathrm{y}$	Segment Addition Post
4.	$\mathrm{cy}=\mathrm{a}^{2} ; \mathrm{c} x=\mathrm{b}^{2}$	Prop of Proportion
5.	$\mathrm{cy}+\mathrm{c} x=\mathrm{a}^{2}+\mathrm{b}^{2}$	APE
6.	$\mathrm{c}(\mathrm{y}+\mathrm{x})=\mathrm{a}^{2}+\mathrm{b}^{2}$	D - Prop
7.	$\mathrm{c} \cdot \mathrm{c}=\mathrm{a}^{2}+\mathrm{b}^{2}$	Sub
8.	$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$	Exponents

Thm: In a $45-45-90^{\circ} \Delta$, the hypotenuse is $\sqrt{2}$ times the leg.

Statements	Reasons	
1.$\mathrm{Rt} \Delta \mathrm{RST}$ $\angle \mathrm{R}=\angle \mathrm{T}$	Give	
2.	$\mathrm{RS}=\mathrm{TS}$	
3.	$(\mathrm{RT})^{2}=\ell^{2}+\ell^{2}$	legs opp. base \angle 's isos. Δ
4.	$(\mathrm{RT})^{2}=2 \ell^{2}$	Pythagorean Thm
5.	$\mathrm{RT}=\sqrt{2} \ell$	D - Prop
		Exponents

Thm: In a $30-60-90 \Delta$, the hypotenuses is twice the shorter leg and the longer leg is $\sqrt{3}$ times the shorter leg.

G: \quad Rt $\triangle \mathrm{ACB}$
$\angle B=60^{\circ}$
$\angle \mathrm{BAC}=30$
$\mathrm{BC}=S$
$\mathrm{AC}=l$
P: $\quad \mathrm{AB}=2 \mathrm{~S}$
$l=S \sqrt{3}$

Statements		Reasons
1.	Draw $\overrightarrow{\mathrm{BC}}, \& \overrightarrow{\mathrm{AX}}$ so that $\angle \mathrm{BAX}=60$	Construction
2.	$\Delta \mathrm{BAR}$ is equilateral	
3.	$\mathrm{AB}=\mathrm{BR}$	
4.	$\mathrm{BR}=2 \mathrm{~S}=\mathrm{AB}$	equiangular Δ 's are equilateral
5.	$S^{2}+l^{2}=(\mathrm{AB})^{2}$	Def equilateral Δ
6.	$S^{2}+l^{2}=(2 \mathrm{~S})^{2}$	
7.	$S^{2}+l^{2}=4 \mathrm{~S}^{2}$	Altitude of bisects opp side
8.	$l^{2}=3 s^{2}$	Sub Thm
9.	$l=\sqrt{3} S$	Exp

Thm: A diameter that is \perp to a chord bisects the chord and its 2 arcs

G:	$\odot \mathrm{O}$
	$\overline{\mathrm{AB}} \perp \overline{\mathrm{XY}}$
$\mathrm{P}:$	$\overline{\mathrm{XK}} \cong \overline{\mathrm{YK}}$
	$\widehat{X B} \cong \widehat{Y B}$

	Statements	Reasons
1.	Draw $\overline{\mathrm{OX}}$ and $\overline{\mathrm{OY}}$	Construction
2.	$\overline{\mathrm{AB}} \perp \overline{\mathrm{XY}}$	Give
3.	$\overline{\mathrm{OK}} \cong \overline{\mathrm{OK}}$	Reflexive
4.	$\overline{\mathrm{OY}} \cong \overline{\mathrm{OX}}$	Radii of \odot are \cong
5.	$\Delta \mathrm{OKX} \cong \Delta \mathrm{OKY}$	HL
6.	$\overline{\mathrm{XK}} \cong \overline{\mathrm{YK}}$	cpctc
	$\angle 1 \cong \angle 2$	
7.	$X B \cong Y B$	
		are \cong

Thm: The measure of an inscribed \angle is half the measure of the intercepted arc.

Give: $\quad \angle \mathrm{ABC}$ inscribed
Prove: $\angle \mathrm{ABC}=\frac{1}{2} \overparen{A C}$

Strategy: Go back to triangle theorems

Statements		Reasons
1.	Draw OA	Construction
2.	$\overline{\mathrm{OB}} \cong \overline{\mathrm{OA}}$	Radii
3.	$\angle \mathrm{A} \cong \angle \mathrm{B}$	2 sides of Δ are \cong, \angle 's
opposite are \cong		
4.	$\angle \mathrm{AOC}=\angle \mathrm{A}+\angle \mathrm{B}$	Ext $\angle=2$ remote int \angle 's
5.	$\angle \mathrm{AOC}=\angle \mathrm{B}+\angle \mathrm{B}$	Sub
6.	$\angle \mathrm{AOC}=2 \angle \mathrm{~B}$	D-Prop
7.	$\frac{1}{2} \angle \mathrm{AOC}=\angle \mathrm{B}$	Div Prop Eq
8.	$\angle \mathrm{AOC} \cong \overparen{A C}$	Def Central \angle, arc
9.	$\frac{1}{2} \overparen{A C}=\angle \mathrm{B}$	Sub

Thm: When 2 secants intersect in a circle, the \angle formed is $=$ to $\frac{1}{2}$ the sum of the arcs formed by the vertical \angle.

G: XY \& ZW intersect
P: $\quad \angle 1=\frac{1}{2}(\overparen{X Z}+\overparen{Y W})$

Strategy: Construct triangles and use their relationships with the theorems on central angles and inscribed angles

	Statements	Reasons
1.	Draw $\overline{X W}$	Construction
2. $\angle 1=\angle 2+\angle 3$	Ext \angle of $\Delta=2$ remote int \angle 's	
3. $\angle 2=\frac{1}{2} \overparen{K Z}$	Inscribed $\angle=\frac{1}{2}$ intercepted arc	
4. $\angle 3=\frac{1}{2} \overparen{Y W}$		
5. $\angle 1=\frac{1}{2} \overparen{X Z}+\frac{1}{2} \overparen{Y W}$	Sub	
$\angle 1=\frac{1}{2}(\overparen{X Z}+\overparen{Y W})$	D-Prop	

Thm: When 2 chords intersect, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other.

G: Chords $\overline{X Y} \& \overline{Z W}$
P: $\quad \mathrm{a} \cdot \mathrm{b}=\mathrm{c} \cdot \mathrm{d}$

Statements	Reasons	
1.	Draw $\overline{\mathrm{XZ}}$ and $\overline{\mathrm{WY}}$	Construction
2.	$\angle \mathrm{X} \cong \angle \mathrm{W}$	Inscribed \angle 's intercept
	$\angle Z \cong \angle \mathrm{Y}$	same arc
3. $\Delta \mathrm{XKZ} \sim \Delta \mathrm{WKY}$	AA Postulate	
4. $\frac{\mathrm{a}}{\mathrm{d}}=\frac{\mathrm{c}}{\mathrm{b}}$	$\sim \Delta$'s proportic	
5. $\mathrm{ab}=\mathrm{cd}$	Prop of Proportion	

Thm: If 2 secants are drawn to a circle from an exterior pt , the product of the lengths of one secant segment and its external segment is equal to the product of the other secant and its external segment.

Given: secants $\overline{\mathrm{PX}}$ and $\overline{\mathrm{PY}}$
Prove: PX • PY = PZ•PW

Statements	Reasons	
1.	Draw $\overline{\mathrm{XW}}$ and $\overline{\mathrm{ZY}}$	Construction
2.	$\angle \mathrm{X} \cong \angle \mathrm{Z}$	Inscribed \angle, same arcs
3.	$\angle \mathrm{P} \cong \angle \mathrm{P}$	Reflexive
4.	$\Delta \mathrm{XPW} \sim \Delta \mathrm{ZPY}$	AA Postulate
5.	$\frac{\mathrm{PX}}{\mathrm{PZ}}=\frac{\mathrm{PW}}{\mathrm{PY}}$	$\sim \Delta$'s, sides in proportion
6.	$\mathrm{PX} \cdot \mathrm{PY}=\mathrm{PZ} \cdot \mathrm{PW}$	Prop of Proportion

Triangle Inequality

Thm. The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given: $\triangle \mathrm{ABC}$
Prove: $\mathbf{A C}+\mathbf{A B}>\mathbf{C B}$

Statements	Reasons
1. On BA take D so $\mathrm{DA}+\mathrm{AC}$	On a ray, exactly on point $=$
2. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$	Isosceles Δ
3. $\mathrm{m} \angle 4=\mathrm{m} \angle 2+\angle 3$	Angle Add Postulate
4. $\mathrm{m} \angle 4>\mathrm{m} \angle 2$	If $\mathrm{a}=\mathrm{b}+\mathrm{c}, \mathrm{c}>0, \mathrm{a}>\mathrm{b}$
5. $\mathrm{m} \angle 4>\mathrm{m} \angle 1$	Substitution
6. $\mathrm{DB}>\mathrm{CB}$	One \angle greater then another \angle
7. $\mathrm{DB}=\mathrm{DA}+\mathrm{AB}$	Def of Betweeness
8. $\mathrm{DA}+\mathrm{AB}>\mathrm{CB}$	Substitution, from $6 \& 7$
9. $\mathrm{AC}+\mathrm{AB}>\mathrm{CB}$	Substitution, from $1 \& 8$

