

Geo Proofs

by Bill Hanlon

Future Reference – To prove congruence, it is important that you remember not only your congruence theorems, (SSS, SAS, ASA, AAS, HL, HA, HL, LA) but know the relationships with angles formed by intersecting lines, parallel lines, right angles, angles bisectors, medians and theorems concerning triangles. Quite often you will need to use construction to create triangles that will allow you to do proofs or solve problems.

Thm - Vertical angles are congruent

Strategy: Knowing angles 1 and 3 are two angles whose ext. sides form a straight line as do angles 2 and 3. Those angles form sup $\angle s$, whose sum is 180°

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are vert \angle 's	Given
2. $\angle 1$ and $\angle 3$ are supp \angle 's	Ext sides, 2 adj ∠'s in a line
3. $\angle 2$ and $\angle 3$ are supp \angle 's	Same as #2
4. $\angle 1 + \angle 3 = 180^{\circ}$ $\angle 2 + \angle 3 = 180^{\circ}$	Def of Supp $\angle s$
5. $\angle 1 + \angle 3 = \angle 2 + \angle 3$	Sub
6. $\angle 1 = \angle 2$	Sub Prop of Equality
7. $\angle 1 \cong \angle 2$	Def of Congruence
	•

Thm If 2 parallel lines are cut by a transversal, the alternate interior angles are congruent

Strategy: Since we know by postulate that $\angle 1$ and $\angle 3$ are equal by corresponding $\angle s$ and $\angle 2$ and $\angle 3$ are equal because of vertical, we can make those equations and substitute

Statements	Reasons
1 ll m $\angle 1$ and $\angle 2$ are alt int \angle 's	Given
$\angle 1$ and $\angle 3$ are corr. $\angle s$	Def of corr. $\angle s$
$\angle 1 \cong \angle 3$	Two II lines, cut by t, corr. \angle 's \cong
$\angle 3 \cong \angle 2$	Vert∠'s
$\angle 1 \cong \angle 2$	Transitive Prop
	1 ll m $\angle 1$ and $\angle 2$ are alt int \angle 's $\angle 1$ and $\angle 3$ are corr. $\angle s$ $\angle 1 \cong \angle 3$ $\angle 3 \cong \angle 2$

Strategy: Using our knowledge of ll lines being cut by a transversal, we will construct a line thru F ll to line segment DE, then segments DF and EF are transversals and the alt int \angle s are

	Statements	Reasons
1.	Draw $\overline{RS} \parallel \overline{DE}$	Construction
2.	$\angle 4 \land \angle DFS$ are supp	Ext sides of 2 adj 2's
3.	$\angle 4 + \angle DFS = 180$	Def Supp ∠'s
4.	$\angle \text{DFS} = \angle 2 + \angle 5$	Angle Add Post
5.	$\angle 4 + \angle 2 + \angle 5 = 180$	Sub
6.	$\angle 1 = \angle 4$ $\angle 3 = \angle 5$	2 lines cut by t, alt int \angle 's =
7.	$\angle 1 + \angle 2 + \angle 3 = 180$	Sub into line 5

Congruence Postulates

SSS SAS ASA

Thm If two angles and the non included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

Given : $\angle A \cong \angle D$, $\angle C \cong \angle F$, $AB \cong DE$ Prove: $\triangle ABC \cong \triangle DEF$

Strategy: Knowing 2 \angle s of one triangle are equal to two angles of another triangle, the third angles must be equal. That allows me to them use one of the other congruence postulates to complete the proof.

State	ments	Reasons
1.	$\angle A \cong \angle D$ $\angle C \cong \angle F$ $\overline{AB} = \overline{DE}$	Given
2.	$AB \cong DE$ $\angle B \cong \angle E$	2∠'s of a Δ congruent 2 's of another Δ , 3 rd 's congruent
3.	\triangle ABC \cong \triangle DEF	ASA

Strategy: We know the sum of the interior angles of a triangle is 180, we know that the ext sides of angles 1 and 2 lie in a line, hence equal 180, we set them equal and solve A

	Statements	Reasons
1.	$\angle A + \angle C + \angle 2 = 180$	Int \angle 's of $\Delta = 180$
2.	$\angle 1 \land \angle 2$ are supp	Ext sides 2 adj ∠'s
3.	$\angle 1 + \angle 2 = 180$	Def Supp ∠'s
4.	$\angle A + \angle C + \angle 2 = \angle 1 + \angle 2$	Sub
5.	$\angle A + \angle C = \angle 1$	Sub Prop Equality

Thm. If $2 \angle s$ of Δ are \cong , the sides opposite those $\angle s$ are \cong G: ΔABC $\angle A \cong \angle B$ P: $\overline{AC} \cong \overline{BC}$ C 1 2 A XB

Strategy: To prove congruence, we need two triangles, we only have one. Constructing an angle bisector results in two triangles being formed which allows me to use the congruence theorems to prove triangles congruent, then use cpctc

	Statements	Reasons
1.	Draw ∠ bisector CX	Construction
2.	$\angle 1 \cong \angle 2$	Def ∠ bisector
3.	$\angle A \cong \angle B$	Given
4.	$\overline{CX} \cong \overline{CX}$	Reflexive Prop
5.	$\Delta CAX \cong \Delta CBX$	AAS
6.	$\overline{AC} \cong \overline{BC}$	cpctc

Strategy: Use the congruence theorems to prove the triangles congruent

	Statements	Reasons
1.	RSTW is a ogram	Given
2.	$\overline{RS} \parallel \overline{WT}$	Def - ∥ogram
3.	$\angle 1 \cong \angle 2$	2 lines cut by t , alt int ∠'s ≅
4.	$\overline{RT} \cong \overline{RT}$	Reflexive
5.	$\overline{RW} \parallel \overline{ST}$	Def - ∥ogram
6.	$\angle 3 \cong \angle 4$	2 lines cut by t , alt int ∠'s ≅
7.	$\Delta RST \cong \Delta TWR$	ASA

The diagonals of a ||ogram bisect each other.

Strategy: Drawing the diagonals and using the theorems we have about parallel lines being cut by a transversal, we are able to label angles, show triangles congruent, then use cpctc

	Statements	Reasons
1.	JKLM is ogram	Give
2.	$\overline{JK} \parallel \overline{ML}$	Def - ogram
3.	$\angle 1 \cong \angle 2$	Alt int ∠'s
4.	$\overline{JK} \cong \overline{ML}$	opposite sides ∥ogram ≅
5.	$\angle 3 \cong \angle 4$	Alt int ∠'s
6.	$\Delta JEK \cong \Delta LEM$	ASA
7.	$\frac{\overline{JE}}{\overline{KE}} \cong \frac{\overline{LE}}{\overline{ME}}$	cpctc

Thm:

Thm: The diagonals of a rhombus are \bot

- G: Rhombus RSTW
- P: $RT \perp SW$

Strategy: Constructing the diagonals and using the def of a rhombus and parallelogram theorems, we have to show congruent adjacent angles to prove lines are perpendicular. So by proving triangles are congruent, we can use cpctc

	Statements	Reasons
1. 2.	$RSTW - Rhombus$ $\overline{RS} \cong \overline{SW}$	Give Def – Rhombus
3.	$\overline{SA} \cong \overline{WA}$	Diagonals ogram bisect each other
4.	$\overline{RA} \cong \overline{RA}$	Reflexive
5.	$\Delta RSA \cong \Delta RWA$	SSS
6.	$\angle 1 \cong \angle 2$	cpctc
7.	RT ⊥ SW	2 lines form \cong adj \angle 's

Thm: The median of a trapezoid is || to the bases and is equal to half the sum of the bases.

G: RSTW - trap
P:
$$\overline{MN} \parallel \overline{ST}$$

 $\overline{MN} \parallel \overline{RW}$
 $MN = \frac{1}{2} (ST + RW)$
 M
 N
 R
 M
 N
 M
 S
 T

Strategy: Use Coordinate Geometry. Place trap on coordinate axes, label pts. carefully keeping relationships. Find slopes, || lines have = slopes. Find distances.

Since MN, RW, and ST have the same slope, the lines are ||

 $\begin{array}{ll} MN=c+d-a & RW+ST=2c-2a+2d \\ RW=2c-2a & =2(c-a+d) \\ ST=2d & MN & =c+d-a \end{array}$

$$MN = \frac{1}{2}(STW + RW)$$

Thm: If a line is || to one side of a Δ and intersects the other 2 sides, it divides them proportionally.

Strategy: Show 2 triangles formed are similar to write proportion, then use the Segment Add Post to make substitutions

.

	Statements	Reason
1. 2.	$\overline{YZ} \parallel \overline{AB}$ $\angle 1 \cong \angle 2; \ \angle 3 \cong \angle 4$	Given 2 ∥ lines cut by t, c ∠'s ≅
3.	$\Delta ACB \sim \Delta YCZ$ -	Angle Angle Post
4.	$\frac{AC}{YC} = \frac{BC}{ZC}$	~ Δ sides in proportion
5.	$\frac{\text{AC-YC}}{\text{YC}} = \frac{\text{BC-ZC}}{\text{ZC}}$	Prop of proportions
6.	AY + YC = AC BZ + ZC = BC	Segment Add Post
7.	AY = AC - YC $BZ = BC - ZC$	Sub Prop =
8.	$\frac{AY}{YC} = \frac{BZ}{ZC}$	Sub. In line 5

Thm: If a ray bisects an \angle of Δ , it divides the opposite side into segments whose lengths are proportional to the lengths of the other 2 sides.

	Statements	Reasons
1.	Extend ML, YN LP	Construction
2.	$\frac{MP}{PN} = \frac{LM}{LY} \text{ for } \Delta MYN$	line , divides Δ pro
3.	$\angle 1 \cong \angle 2$	Corr ∠'s
4.	$\angle 1 \cong \angle 3$	Det ∠ bisector
5.	$\angle 3 \cong \angle 4$	Alt int ∠'s
6.	$\angle 2 \cong \angle 4$	Sub
7.	$\overline{LY} \cong \overline{LN}$	Base ∠'s ≅, sides ≅
8.	$\frac{\mathrm{MP}}{\mathrm{PN}} = \frac{\mathrm{LM}}{\mathrm{LN}}$	Sub

Thm: If the altitude is drawn to the hypotenuse of a right Δ , the 2 Δ 's formed are similar to the given Δ and each other.

G: Rt \triangle ABC, $\overline{CD} \perp \overline{AB}$

P: $\Delta ADC \sim \Delta ACB$ $\Delta CDB \sim \Delta ACB$ $\Delta ADC \sim \Delta CDB$

	Statements	Reasons
1.	$\angle ACB \text{ rt } \angle, \overline{CD} \perp \overline{AB}$	Give
2.	$\angle 1$, $\angle 2$ are rt \angle 's	\perp lines form rt \angle 's
3.	$\angle A \cong \angle A; \Delta ACB \& \Delta ADC$	Reflexive
4.	$\Delta ADC \sim \Delta ACB$	AA Postulate
5.	$\angle B \cong \angle B, \Delta ACB \& \Delta CDB$	Reflexive
6.	$\Delta CDB \sim \Delta ACB$	AA Postulate
7.	$\Delta ADC \sim \Delta CDB$	Transitive; 4 & 6

1.	ΔABC is rt Δ	Given
	\overline{CM} is the median	
2.	Construct \overline{DM} thru M	Construction
	parallel to \overline{AC}	
3.	∠ MDC is rt angle	Corresponding angles
4.	BM = AM	Def of median
5.	BD = DC	lines, congruent segments
6.	$\triangle MBD \cong \triangle MCD$	HL Thm
7.	CM ≅ MB	cpctc
8.	BM + MA = AB	Segment Add Thm
9.	BM + BM = AB	Sub
10.	2 BM = AB	Dist Prop
11.	2 CM = AB	Sub
12.	$CM = \frac{1}{2} (AB)$	Div Prop Eq

Thm: In any rt Δ the square of the hypotenuse is equal to the sum of the squares of the legs.

- G: Rt \triangle ACB
- P: $c^2 = a^2 + b^2$

	Statements	Reasons
1.	Draw \perp from c to AB	Construction
2.	$\frac{c}{a} = \frac{a}{v}; \frac{c}{b} = \frac{b}{\omega}$	The length of a leg of a rt Δ is
		the geo mean
3.	$\mathbf{c} = \mathbf{x} + \mathbf{y}$	Segment Addition Post
4.	$cy = a^2$; $c \not = b^2$	Prop of Proportion
5.	$cy + c \varkappa = a^2 + b^2$	APE
6.	$c(y+x) = a^2 + b^2$	D – Prop
7.	$\mathbf{c} \bullet \mathbf{c} = \mathbf{a}^2 + \mathbf{b}^2$	Sub
8.	$c^2 = a^2 + b^2$	Exponents

Thm: In a $45 - 45 - 90^{\circ} \Delta$, the hypotenuse is $\sqrt{2}$ times the leg.

	Statements	Reasons
1.	$Rt \ \Delta RST \\ \angle R = \angle T$	Give
2.	RS = TS	legs opp. base \angle 's isos. Δ
3.	$(RT)^2 = \ell^2 + \ell^2$	Pythagorean Thm
4.	$(RT)^2 = 2 \ell^2$	D – Prop
5.	$RT = \sqrt{2} \ell$	Exponents

S

Thm: In a $30 - 60 - 90 \Delta$, the hypotenuses is twice the shorter leg and the longer leg is $\sqrt{3}$ times the shorter leg.

G:	Rt ΔACB
	$\angle B = 60^{\circ}$
	$\angle BAC = 30$
	BC = S
	AC = l
P :	AB = 2S
	$l = S\sqrt{3}$

Statements	Reasons
1. Draw \overrightarrow{BC} , & \overrightarrow{AX} so that $\angle BAX = 60$	Construction
2. ΔBAR is equilateral 3. $AB = BR$ 4. $BR = 2S = AB$ 5. $S^2 + l^2 = (AB)^2$ 6. $S^2 + l^2 = (2S)^2$ 7. $S^2 + l^2 = 4S^2$ 8. $l^2 = 3S^2$ 9. $l = \sqrt{3} S$	equiangular Δ's are equilateral Def equilateral Δ Altitude of ☆ bisects opp side Pyth Thm Sub Exp SPE

Thm:

A diameter that is \perp to a chord bisects the chord and its 2 arcs

	Statements	Reasons
1.	Draw \overline{OX} and \overline{OY}	Construction
2.	$\overline{AB} \perp \overline{XY}$	Give
3.	$\overline{\text{OK}} \cong \overline{\text{OK}}$	Reflexive
4.	$\overline{\text{OY}} \cong \overline{\text{OX}}$	Radii of ⊙ are ≅
5.	$\Delta \text{ OKX} \cong \Delta \text{OKY}$	HL
6.	$\overline{XK} \cong \overline{YK} \\ \angle 1 \cong \angle 2$	cpctc
7.	$XB \cong YB$	2 central \angle 's are \cong , the arcs are \cong

Thm: The measure of an inscribed \angle is half the measure of the intercepted arc.

Strategy: Go back to triangle theorems

	Statements	Reasons
1.	Draw OA	Construction
2.	$\overline{\text{OB}} \cong \overline{\text{OA}}$	Radii
3.	$\angle A \cong \angle B$	2 sides of Δ are \cong , \angle 's opposite are \cong
4.	$\angle AOC = \angle A + \angle B$	Ext $\angle = 2$ remote int \angle 's
5.	$\angle AOC = \angle B + \angle B$	Sub
6.	$\angle AOC = 2 \angle B$	D-Prop
7.	$\frac{1}{2} \angle AOC = \angle B$	Div Prop Eq
8.	$\angle AOC \cong \widehat{AC}$	Def Central ∠, arc
9.	$\frac{1}{2} \widehat{AC} = \angle \mathbf{B}$	Sub

Thm: When 2 secants intersect in a circle, the \angle formed is = to $\frac{1}{2}$ the sum of the arcs formed by the vertical \angle .

G: XY & ZW intersect P: $\angle 1 = \frac{1}{2} (\widehat{XZ} + \widehat{YW})$ X

Z Y Y W X Y W

Strategy: Construct triangles and use their relationships with the theorems on central angles and inscribed angles

	Statements	Reasons
1.	Draw \overline{XW}	Construction
2.	$\angle 1 = \angle 2 + \angle 3$	Ext \angle of $\Delta = 2$ remote int \angle 's
3.	$\angle 2 = \frac{1}{2} \widehat{XZ}$ $\angle 3 = \frac{1}{2} \widehat{YW}$	Inscribed $\angle = \frac{1}{2}$ intercepted arc
4.	$\angle 1 = \frac{1}{2} \ \widehat{\mathbf{X}} + \frac{1}{2} \widehat{\mathbf{Y}}$	Sub
5.	$\angle 1 = \frac{1}{2} (\widehat{XZ} + \widehat{YW})$	D-Prop

Thm: When 2 chords intersect, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other.

- G: Chords \overline{XY} & \overline{ZW}
- P: $a \bullet b = c \bullet d$

	Statements	Reasons
1.	Draw \overline{XZ} and \overline{WY}	Construction
2.	$ \angle X \cong \angle W \angle \overline{Z} \cong \angle Y $	Inscribed ∠'s intercept same arc
3.	$\Delta XK \mathbf{Z} \sim \Delta WKY$	AA Postulate
4.	$\frac{a}{d} = \frac{c}{b}$	~ Δ 's proportic
5.	ab = cd	Prop of Proportion

Thm: If 2 secants are drawn to a circle from an exterior pt, the product of the lengths of one secant segment and its external segment is equal to the product of the other secant and its external segment.

Given: secants \overline{PX} and \overline{PY}

Prove: $PX \bullet PY = PZ \bullet PW$

	Statements	Reasons
1.	Draw \overline{XW} and \overline{ZY}	Construction
2.	$\angle X \cong \angle Z$	Inscribed \angle , same arcs
3.	$\angle P \cong \angle P$	Reflexive
4.	$\Delta \; XPW \sim \Delta \; ZPY$	AA Postulate
5.	$\frac{PX}{PZ} = \frac{PW}{PY}$	$\sim \Delta$'s, sides in proportion
6.	$PX \bullet PY = PZ \bullet PW$	Prop of Proportion

Triangle Inequality

Thm. The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given: $\triangle ABC$

Prove: AC + AB > CB

Statements	Reasons
1. On BA take D so DA + AC	On a ray, exactly on point =
2. m $\angle 1 = m \angle 2$	Isosceles Δ
3. $m \angle 4 = m \angle 2 + \angle 3$	Angle Add Postulate
4. $m \angle 4 > m \angle 2$	If $a = b + c$, $c > 0$, $a > b$
5. m∠4 > m∠1	Substitution
6. DB > CB	One \angle greater then another \angle
7. $\mathbf{DB} = \mathbf{DA} + \mathbf{AB}$	Def of Betweeness
8. DA + AB > CB	Substitution, from 6 & 7
9. $AC + AB > CB$	Substitution, from 1 & 8