Graphing Parabolas – Vertex Form

 $y = a(x - h)^2 + k$, vertex (h, k)

Use the parent function, $y = x^2$,

- 1. From the parent function, move the vertex over *h* and up *k* units.
- 2. Pick a convenient point, zero if possible
- 3. Find another point by using symmetry.

Example Graph $y = 4(x - 1)^2 + 3$

- 1. New vertex (1, 3) from parent fct with V(0, 0)
- 2. Let x = 0, then y = 7, (0, 7)
- 3. Use symmetry, 3rd point is (2, 7) From the vertex, we went over 1 to the left and up 4, so by using symmetry, we go over 1 to the right and up 4

Graph the following and identify the vertex.

B

- 1. $y = (x 3)^2$ $y = (x 5)^2$
- 2. $y = (x + 3)^2$ $y = (x + 5)^2$
- 3. $y = x^2 + 4$ $y = x^2 + 1$
- 4. $y = x^2 2$ $y = x^2 1$
- 5. $y = (x 3)^2 + 5$ $y = (x 2)^2 + 5$

Hanlonmath.com

5.
$$y = (x + 3)^2 + 5$$
 $y = (x + 2)^2 + 5$

6. $y = (x + 5)^2 - 2$ $y = (x - 2)^2 - 1$

7.
$$y = -(x + 5)^2 - 2$$
 $y = -(x - 2)^2 - 1$

8.
$$y = 3(x + 1)^2 - 2$$
 $y = 3(x - 1)^2 + 2$

9.
$$y = -2(x + 2)^2 + 3$$
 $y = \frac{1}{2}(x + 2)^2 - 1$

10.
$$y = x^2 + 4$$
 $y = (x - 4)^2$