Graphing Parabolas - Vertex Form

$$
y=a(x-h)^{2}+k, \text { vertex }(h, k)
$$

Use the parent function, $y=x^{2}$,

1. From the parent function, move the vertex over h and up k units.
2. Pick a convenient point, zero if possible

3. Find another point by using symmetry.

Example Graph $y=4(x-1)^{2}+3$

1. New vertex $(1,3)$ - from parent fct with $\mathrm{V}(0,0)$
2. Let $x=0$, then $y=7,(0,7)$
3. Use symmetry, $3^{\text {rd }}$ point is $(2,7)$ From the vertex, we went over 1 to the left and up 4, so by using symmetry, we go over 1 to the right and up 4

Graph the following and identify the vertex.
A

1. $y=(x-3)^{2}$

$$
y=(x-5)^{2}
$$

2. $y=(x+3)^{2}$

$$
y=(x+5)^{2}
$$

3. $y=x^{2}+4$

$$
y=x^{2}+1
$$

4. $y=x^{2}-2$
$y=x^{2}-1$
5. $y=(x-3)^{2}+5$

$$
y=(x-2)^{2}+5
$$

5. $y=(x+3)^{2}+5$
$y=(x+2)^{2}+5$
6. $y=(x+5)^{2}-2$
$y=(x-2)^{2}-1$
7. $y=-(x+5)^{2}-2$
$y=-(x-2)^{2}-1$
8. $y=3(x+1)^{2}-2$
$y=3(x-1)^{2}+2$
9. $y=-2(x+2)^{2}+3$
$y=1 / 2(x+2)^{2}-1$
10. $y=x^{2}+4$
$y=(x-4)^{2}$
