Hyperbolas - Center NOT at Origin

Identify the center, vertices, foci, asymptotes, and the direction of the transverse axis.

Ex. $\quad \frac{(x-2)^{2}}{9}-\frac{(y+4)^{2}}{25}=1$

1. Graph the hyperbola with equation
2. Graph the hyperbola with equation
3. Graph the hyperbola with equation
4. Graph the hyperbola with equation
5. Graph the hyperbola with equation
6. Graph the hyperbola with equation
7. Graph the hyperbola with equation
8. Graph the hyperbola with equation
9. Graph the hyperbola with equation
10. Graph the hyperbola with equation

Center is at $(2,-4)$

$$
\begin{aligned}
& a=3, b=5, c=\sqrt{a^{2}+b^{2}}=\sqrt{34} \\
& \text { Foci }(2+\sqrt{34},-4) \text { and }(2-\sqrt{34},-4) \\
& \text { Vertices }(5,-4) \text { and }(-1,-4) \\
& \text { Eqns Asymptotes: } y+4= \pm \pm \frac{5}{3}(x-2) \\
& \qquad \begin{array}{l}
3 y+12=5 x-10 \\
5 x-3 y-22=0 \text { and } \\
\\
5 x+3 y+2=0
\end{array}
\end{aligned}
$$

$$
\frac{x^{2}}{9}-\frac{y^{2}}{4}=1
$$

$$
\frac{(x-2)^{2}}{4}-\frac{(y+1)^{2}}{9}=1
$$

$$
\frac{x^{2}}{16}-\frac{(y-3)^{2}}{2}=1
$$

$$
\frac{(x+1)^{2}}{25}-\frac{(y-2)^{2}}{9}=1
$$

$\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$

$$
\frac{(x-3)^{2}}{9}-\frac{y^{2}}{25}=1
$$

$$
\frac{x^{2}}{25}-\frac{(y+2)^{2}}{9}=1
$$

$$
\frac{(x+2)^{2}}{16}-\frac{(y-1)^{2}}{4}=1
$$

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
\frac{(x-1)^{2}}{16}-\frac{(y+3)^{2}}{4}=1
$$

